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Let (Ω,F , P ) be a probability space and F be a filtration

F0 ⊂ · · · ⊂ FT (a sequence of sigma fields) with F0 = {∅,Ω} and

FT = F. Stopping time is a random variable τ : Ω → {0, . . . , T}
such that {ω ∈ Ω: τ(ω) = t} ∈ Ft for t = 0, . . . , T . For a ran-

dom process Z0, ..., ZT , adapted to the filtration F, the optimal

stopping time problem can be written as

max
τ∈T

E[Zτ ],

where T is the set of stopping times.

It is tempting to write distributionally robust/risk averse coun-

terpart as

max
τ∈T

inf
Q∈M

EQ[Zτ ],

where M is a family of probability measures on (Ω,F).
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The expectation operator has the following property

EQ[·] = EQ|F0

(
EQ|F1

(
· · ·EQ|FT−1

[·]
))
, (1)

where EQ|Ft denotes the conditional expectation. Note that

EQ|F0
= EQ since F0 = {∅,Ω}.

Then

inf
Q∈M

EQ[·] ≥ inf
Q∈M

EQ|F0

(
inf
Q∈M

EQ|F1

(
· · · inf

Q∈M
EQ|FT−1

[·]
))

. (2)

There is a technical difficulty here since it is not clear what is

minimum (inf) of conditional expectations EQ|Ft.
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Let Z := Lp(Ω,F , P ) and suppose that M is a set of probability

measures absolutely continuous with respect to the reference

probability measure P and such that the densities dQ/dP , Q ∈M,

form a bounded convex weakly∗ closed set A ∈ Z∗ in the dual

space Z∗ = Lq(Ω,F , P ). Consider functional % : Z → R defined

as

%(Z) := sup
Q∈M

EQ[Z] = sup
ζ∈A

∫
Ω
ζ(ω)Z(ω)dP (ω).

Its concave counterpart is ν(Z) = −%(−Z),

ν(Z) = inf
Q∈M

EQ[Z].
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Functional % : Z → R has the following properties for Z,Z′ ∈ Z;
(i) %(Z + Z′) � %(Z) + %(Z′), subadditivity,
(ii) if Z � Z′, then %(Z) ≤ %(Z′), monotonicity,
(iii) %(λZ) = λ%(Z), λ ≥ 0, positive homogeneity
(iv) %(Z + a) = %(Z) + a, a ∈ R, translation equivariance.

Its concave counterpart is ν(Z) = −%(−Z) inherits properties
(ii)-(iv) and is superadditive. Functional % is convex, and ν is
concave.

It is said that a functional % : Z → R is (convex) coherent if
it satisfies (i)-(iv) (Artzner et al (1999)). By duality (convex)
coherent % can be represented in the form

%(Z) = sup
ζ∈A

∫
Ω
ζ(ω)Z(ω)dP (ω),

for some set of densities A ⊂ Z∗.
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Conditional analogues (assuming that A, and hence % and ν, are

law invariant)

%|Ft(Z) := ess sup
Q∈M

EQ|Ft[Z], ν|Ft(Z) := ess inf
Q∈M

EQ|Ft[Z].

Note that %|Ft(Z) and ν|Ft can be viewed as mappings from ZT =

Lp(Ω,FT , P ) to Zt = Lp(Ω,Ft, P ) and the inequality (2) as

ν(·) ≥ ν|F0

(
ν|F1

(
· · · ν|FT−1

(·)
))
.

Similarly

%(·) ≤ %|F0

(
%|F1

(
· · · %|FT−1

(·)
))
.
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Note that for τ ∈ T, Ω is the union of the disjoint sets

Ωτ
t := {ω : τ(ω) = t}, t = 0, . . . , T,

and hence 1Ω =
∑T
t=0 1{τ=t}. Moreover 1{τ=t}Zτ = 1{τ=t}Zt and

thus for Zt ∈ Zt it follows that

Zτ =
T∑
t=0

1{τ=t}Zτ =
T∑
t=0

1{τ=t}Zt,

and hence (since 1{τ=t}Zt is Ft-measurable)

E(Zτ) = E
[∑T

t=0 1{τ=t}Zt
]

= 1{τ=0}Z0 + E|F0

(
1{τ=1}Z1 + · · ·+ E|FT−1

(1{τ=T}ZT )
)
.
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Definition 1 Let %t|Ft : Zt+1 → Zt, t = 0, . . . , T−1, be monotone,

translation equivariant mappings and consider the corresponding

mappings ρs,t : Zt → Zs represented in the nested form

ρs,t(·) := %s|Fs
(
%s+1|Fs+1

(
· · · %t−1|Ft−1

(·)
) )
, 0 ≤ s < t ≤ T.

The stopping risk measure is

ρ0,T (Zτ) = 1{τ=0}Z0+%0|F0

(
1{τ=1}Z1 + · · ·+ %T−1|FT−1

(1{τ=T}ZT )
)
,

and its concave counterpart

ν0,T (Zτ) = 1{τ=0}Z0+ν0|F0

(
1{τ=1}Z1 + · · ·+ νT−1|FT−1

(1{τ=T}ZT )
)
.
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Distributionally robust/risk averse optimal stopping

max
τ∈T

ν0,T (Zτ) (3)

or

max
τ∈T

ρ0,T (Zτ).

If %t|Ft are convex coherent, then the composite functional ρ0,T
(functional ν0,T ) is convex (concave) coherent, and hence

ν0,T (Z) = inf
ζ∈Â

∫
Ω
ζ(ω)Z(ω)dP (ω),

for some set of densities Â ⊂ Z∗. Thus for the corresponding set
of probability measures M̂ = {Q : dQ/dP ∈ Â}, problem (3) can
be written as

max
τ∈T

inf
Q∈M̂

EQ[Zτ ].
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Dynamic programming equations.

Definition 2 (Snell envelope) Let Zt ∈ Zt, t = 0, ..., T , be a

stochastic process. The Snell envelope (associated with func-

tional ρ0,T ) is the stochastic process

ET := ZT ,

Et := Zt ∨ %t|Ft(Et+1),

t = 0, . . . , T − 1, defined in backwards recursive way.

Similarly Snell envelope can be defined for ν0,T .
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For m = 0, . . . , T , consider Tm := {τ ∈ T : τ ≥ m}, the optimiza-

tion problem

max
τ∈Tm

ρ0,T (Zτ), (4)

and

τ∗m(ω) := min{t : Et(ω) = Zt(ω), m ≤ t ≤ T}, ω ∈ Ω.

Denote by vm the optimal value of the problem (4). Note the

recursive property ρ0,T (Zτ) = ρ0,m(ρm,T (Zτ)), m = 1, . . . , T .

The following assumption was used by several authors, some

refer to it as local property,

%t|Ft(1A · Z) = 1A · %t|Ft(Z), for all A ∈ Ft, t = 0, . . . , T − 1.

For coherent law invariant mappings %t|Ft it always holds.
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Recall Tm := {τ ∈ T : τ ≥ m} , τ∗m(ω) := min{t : Et(ω) = Zt(ω), m ≤
t ≤ T} and the respective problem (4) maxτ∈Tm ρ0,T (Zτ).

Theorem 1 Let %t|Ft : Zt+1 → Zt, t = 0, . . . , T −1, be (convex or
concave) monotone translation equivariant mappings possessing
local property and ρs,t, 0 ≤ s < t ≤ T , be the corresponding
nested mappings. Then for Zt ∈ Zt, t = 0, ..., T , the following
holds:
(i) for m = 0, . . . , T ,

Em � ρm,T (Zτ), ∀τ ∈ Tm,

Em = ρm,T (Zτ∗m),

(ii) the stopping time τ∗m is optimal for the problem (4),
(iii) if τ̂m is an optimal stopping time for the problem (4), then
τ̂m � τ∗m,
(iv) vm = ρ0,m(Em), m = 1, . . . , T , and v0 = E0.
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We have that Et � Zt, t = 0, . . . , T , and

τ∗0(ω) = min{t : Zt(ω) ≥ Et(ω), t = 0, . . . , T}

is an optimal solution of the optimal stoping problem, and E0

is the corresponding optimal value. That is, going forward the

optimal stopping time τ∗0 stops at the first time Zt = Et. As in

the risk neutral case the time consistency (Bellman’s principle)

is ensured here by the decomposable structure of the considered

nested risk measure. That is, if it was not optimal to stop within

the time set {0, . . . ,m−1}, then starting the observation at time

t = m and being based on the information Fm (i.e., conditional

on Fm), the same stopping rule is still optimal for the problem.
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For convex law invariant risk functional % : Z → R it holds that
E[·] ≤ %(·). In that case the distributionally robust formulation
will stop later than the corresponding risk neutral formulation.
For the respective concave risk functional ν, it will stop earlier.

It is also possible to combine this with policy optimization. That
is, to consider problems

(min/ max
π∈Π

)(min/ max
τ∈T

) %0,T

(
fτ(xτ(·), ·)

)
,

where Π the set of feasible policies π = {x0, x1(·), . . . , xT (·)} such
that ft(xt(·), ·) ∈ Zt, with f0 : Rn0 → R, ft : Rnt × Ω → R, and
feasibility constraints defined by X0 ⊂ Rn0 and multifunctions
Xt : Rnt−1 ×Ω ⇒ Rnt, t = 1, . . . , T . It is assumed that ft(xt, ·) and
Xt(xt−1, ·) are Ft-measurable.

Some of these formulations preserve convexity of ft(·, ω), and
some do not.
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Interchangeability principle for a functional % : Z → R, Z = Lp(Ω,F , P )

Consider a function ψ : Rn ×Ω→ R ∪ {+∞}. Let

Ψ(ω) := inf
y∈Rn

ψ(y, ω)

and

Y := {η : Ω→ Rn |ψη(·) ∈ Z} ,

where ψη(·) := ψ
(
η(·), ·

)
.

Suppose that: the function ψ(y, ω) is random lower semiconti-
nous (i.e., its epigraphical mapping is closed valued and measur-
able), Ψ ∈ Z and the functional % : Z → R is monotone.

It is said that % is strictly monotone if Z � Z′ and Z 6= Z′ implies
that %(Z) < %(Z′).
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Then:

%(Ψ) = inf
η∈Y

%(ψη) (5)

and the implication

η̄(·) ∈ arg min
y∈Rn

ψ(y, ·) =⇒ η̄ ∈ arg min
η∈Y

%(ψη). (6)

holds. If moreover % is strictly monotone, then the converse
of (6) holds as well, i.e.,

η̄ ∈ arg min
η∈Y

%(ψη) =⇒ η̄(·) ∈ arg min
y∈Rn

ψ(y, ·). (7)

Since it is assumed that ψ(y, ω) is random lower semicontinous,
it follows that the optimal value function Ψ(·) and the mul-
tifunction G(·) := arg miny∈Rn ψ(y, ·) are measurable. The left
hand side of (6) and right hand side of (7) mean that η̄(·) is a
measurable selection of G(·).

15



As an example consider optimal stopping time of the American

put option (this stopping time problem is well-known in mathe-

matical finance)

sup
τ∈T

ρ0,T

(
e−rτ [K − Sτ ]+

)
,

where ρ0,T can be convex or concave stopping risk measure,

K > 0 is the strike price, r > 0 is a fixed discount rate and St is

the price of the option at time t. It is assumed that St follows

the geometric random walk process

St = St−1 · er−σ
2/2+εt, t = 1, . . . , T,

in discrete time with εt being an i.i.d. Gaussian white noise

process, εt ∼ N (0, σ2).
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The dynamic programming equations (Snell envelope)

ET (ST ) = e−rT [K − ST ]+,

Et(St) = e−rt[K − St]+ ∨ %t|Ft
(
Et+1(St · er−σ

2/2+εt+1)
)
,

t = T − 1, . . . ,0. Here St are treated as state variables and εt,

t = 0, ..., T , form a random process. Note that

e−rt[K − St]+ ≤ Et(St).

Optimal stopping

τ∗ = min
{
t : e−rt[K − St]+ ≥ Et(St), t = 0, ..., T

}
,

that is it stops first time e−rt[K − St]+ = Et(St).

Note that Et(·) is convex, if the stopping risk measure is convex.
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